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ABSTRACT

The interactions between genetic and environmental factors (G x E interactions) 
play a crucial role in the pathogenesis of schizophrenia. The administration of 
phencyclidine, a psychotropic drug, to Kpna1-deficient mice induces behavioral 
abnormalities resembling schizophrenia. In the nucleus accumbens of these mice, 
the expressions of dopamine receptors, an RNA editing enzyme, and cytoplasmic 
dynein demonstrate gene-environment interaction-dependent alterations. 
Kpna1-deficient mice may be useful as a gene-environment interaction model 
for schizophrenia and provide insights into its pathogenesis. Further, changes in 
gene expression in the nucleus accumbens may be involved in the development of 
schizophrenia.

Introduction

Literature Search

Schizophrenia is a complex mental disorder that typically develops 
in late adolescence or early adulthood. It is characterized by a range 
of symptoms, including positive symptoms such as hallucinations and 
delusions, negative symptoms like flattened affect and avolition, and 
cognitive impairments affecting memory, attention, and executive 
function. Pharmacological treatment with atypical antipsychotics, 
including dopamine d2 and serotonin 5-HT2A receptor inhibitors, 
has been used. However, the mechanism underlying its pathogenesis 
remains unclear1,2.

Several mice models of schizophrenia have been developed to 
elucidate the pathogenesis of the disorder. These models can be 
broadly categorized into genetic (G) and environmental (E) models. 
Genetic models of representative genes associated with schizophrenia 
development, including disrupted-in-schizophrenia 1, neuregulin 1, and 
dystrobrevin-binding protein 1 gene-deficient mice3-6. Environmental 
models, on the other hand, are generated by exposing animals to 
factors known to induce schizophrenia-like symptoms, such as the 
administration of psychotomimetic substances like phencyclidine (PCP), 
amphetamine, and MK-801, or through isolation stress7-10.

The interaction between genetic and environmental factors (G × E) 
has recently been suggested to have a significant impact on the 
pathogenesis of psychiatric disorders11,12. Examination of the exomes of 
schizophrenia patients have implicated mutations of human importin 
α5 (mouse importin α1; gene symbol: Kpna1; protein symbol: KPNA1) 
in psychiatric disorders13. The usefulness of mouse models with KPNA1 
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as a genetic factor and social isolation or PCP as an 
environmental factor has been reported14,15.

The purpose of this mini review is to present insights into 
the usefulness of the G x E mouse model for investigating 
the pathogenesis and progression of schizophrenia, as well 
as its underlying molecular mechanisms.

KPNA1 and Schizophrenia
KPNA1 is a member of the importin α family, which 

assists in the transport of proteins from the cytoplasm to 
the nucleus in eukaryotes. Importin α recognizes classical 
nuclear localization signals, which are composed of basic 
amino acid clusters, and forms a trimeric complex with 
importin β that is transported into the nucleus via the 
nuclear pore complex. In the central nervous system, 
KPNA1 is the most abundantly expressed member of 
the importin α family16. It is an important regulator of 
neuronal development in mice embryonic stem cells17. 
Kpna1 knockout (KO) mice (also known as Importin α5 KO 
mice from the human nomenclature) have demonstrated 
psychiatric disorder-related behavioral deficits such as a 
prominent reduction in anxiety-like behaviors and reduced 
acoustic startle response14,18. The KPNA1 mutations 

Figure 1: Graphical abstract of our G x E model mice study findings.
We found that subchronic administration of phencyclidine induced vulnerability and behavioral abnormalities consistent with the 
symptoms of schizophrenia in Kpna1-deficient mice. Microarray assessment revealed that the levels of expression of dopamine d1/d2 
receptors, an RNA editing enzyme, and a cytoplasmic dynein component demonstrated significant gene-environment (G × E) interaction-
dependent alterations in the NAc. Our findings demonstrate that Kpna1-deficient mice may be useful as G × E interaction mice models 
for psychiatric disorders and further investigations into the pathogenesis of such diseases and disorders. NAc: nuclear accumbens, Dcx: 
doublecortin X.

identified in patients with schizophrenia are located 
outside the conventional NLS recognition region, implying 
that KPNA1 plays a role in schizophrenia development via 
mechanisms other than nucleocytoplasmic transport13,19.

Our G x E mouse model

Previous research investigating the interaction between 
genetic and environmental factors utilized a three-
week environmental stress period administered during 
adolescence (ages 5–8 weeks)20,21. Among these studies, 
the first week (age 5 weeks) was identified as the critical 
period of susceptibility to stress during adolescence. To 
target the critical period of vulnerability to environmental 
stress using PCP as a stress factor, we subcutaneously 
administered 10 mg/kg/day of PCP to 5-week-old male 
Kpna1 KO and WT mice for 7 consecutive days (Figure 1a). 
Behavioral tests were conducted after the mice reached 
8 weeks of age. The vehicle (saline) was administered to 
the control group. Brain tissue was extracted from mice 
at 10 weeks of age after behavioral testing, and gene 
expression analysis was subsequently conducted. We 
found that subchronic administration of phencyclidine, a 
psychotropic drug, induced vulnerability and behavioral 
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abnormalities consistent with schizophrenia symptoms 
in Kpna1-deficient mice. Microarray assessment revealed 
that the levels of expression of dopamine d1/d2 receptors, 
an RNA editing enzyme, and a cytoplasmic dynein 
component demonstrated significant gene-environment 
(G × E) interaction-dependent alterations in the nucleus 
accumbens (NAc) (Figure 1b). Our findings demonstrate 
that Kpna1-deficient mice may be useful as G × E interaction 
models for psychiatric disorders and further investigation 
of their pathogeneses.

Significance of the NAc in Schizophrenia

The cortico-basal ganglia-thalamus-cortical circuit is 
well-recognized for its significant involvement in motor 
control, decision-making, and cognitive activities22. 
Deficiencies in this network have been attributed to various 
movement disorders and mental conditions. Consequently, 
we conducted gene expression analysis of the prefrontal 
cortex (PFc) and nucleus accumbens (NAc). 

RNA extraction from brain tissue was performed. 
Utilizing the Clariom S mouse assay and the GeneChip 
microarray analysis system GCS 3000Dx, microarray 
analysis was conducted. Robust multichip analysis was 
employed to normalize the data. In order to identify 
differentially expressed genes (DEGs) between two groups, 
a fold change factor greater than 1.7 and a p-value less 
than 0.05, as determined by Welch’s t-test, were required. 
Benjamini’s method was utilized to compute the false 
discovery rate (FDR) in order to account for the influence of 
multiple testing. Pathway and Gene Ontology (GO) analyses 
were performed utilizing the DEGs identified, in conjunction 
with a range of bioinformatics tools, such as DAVID, GSEA, 
and Metascape23-25. Our comprehensive genetic analysis 
revealed marked differences in gene expression between 
the PFc and NAc (Figure 2). Different brain regions express 
the genes, and we observed differences in their levels of 
expression. Overall, we identified more DEGs in the NAc 
than in the PFc; for example, we identified fewer DEGs 
in the PFc than in the NAc on comparing the PCP-treated 

groups. These findings demonstrated that genetic and 
environmental factors have distinct effects on various 
brain regions (Figure 3). While several DEGs in the NAc 
were shared by the PCP-treated groups, a considerable 
number of DEGs belonging to the same ontology but having 
differential expressions were identified (Figure 4). GO 
enrichment analysis was applied to the differences in the 
DEGs in the NAc of the PCP-treated groups to extract the 
“biological meanings”, which revealed fluctuations in the 
expression of factors related to AMPA receptor activation 
and calcium ion influx (Figure 5). In addition, the dopamine 
receptors d1/d2 were significantly up-regulated.

Overactivity of dopamine in the mesolimbic system is 
a major hypothesis for the etiology of schizophrenia26,27. 
Increased Drd2 density in the striatum contributes to the 
development of schizophrenia28,29. Thus, we hypothesized 
that behavioral abnormalities reminiscent of schizophrenia 
observed in our mouse model were related to changes in 
Drd2 expression.

According to previous reports, patients with 
schizophrenia have a dysfunctional α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA)-type glutamate 

Figure 2: Differences in gene expressions of the PFc and NAc and 
the related functional factors in each group.
Circos plot shows how the DEGs overlap. Dark orange color 
represents the genes that are shared by multiple lists, while the 
light orange color represents unique DEGs. Purple lines link the 
same gene that are shared by multiple DEGs. Blue lines link the 
genes, although different, fall under the same ontology term. 
DEGs: differentially expressed genes, PFc: prefrontal cortex, NAc: 
nuclear accumbens.

Figure 3: The number of differentially expressed genes in each 
group and a Venn diagram.
Genes with fold change greater than or less than 1.7 times and p < 
0.05 in the Welch’s T-test were selected as DEGs. (a) Up-regulated 
DEGs in the PFc of each group. (b) Down-regulated DEGs in the PFc 
of each group. (c) Up-regulated DEGs in the NAc of each group. (d) 
Down-regulated DEGs in the NAc of each group. The DEGs obtained 
by comparing the expression variations of WT(PCP) and WT (saline) 
are labeled as WT(PCP)/WT (saline). NAc contained more DEGs than 
the PFc in the KO(PCP) than in WT(PCP) group. DEGs: differentially 
expressed genes, PFc: prefrontal cortex, NAc: nuclear accumbens.



Nomiya H, Yamada M. Interactions between genetic and environmental factors and 
schizophrenia: Insights from KPNA1-deficient mice. J Neurol Neuromedicine (2024) 8(2): 1-6 Journal of Neurology & Neuromedicine

Page 4 of 6

receptors30,31; however, the mechanism underlying the 
contributions of AMPA receptors to the pathogenesis 
of schizophrenia is not yet understood. In the NAc, we 
observed altered expressions of an RNA-editing enzyme 
adenosine deaminases acting on RNA (ADAR), an editing 
enzyme of the AMPA receptor subunits GRIA2/GluR232. It 
has been reported that the Q/R site of GRIA2 is 100% edited 
under normal conditions, while, unedited GRIA2 Q/R sites 
increase intracellular Ca2+ influx33. In our mouse model, 
ADAR2 expression was reduced by 0.48-fold, whereas 
GRIA2 expression was elevated by 1.97-folds compared 
to control mice in the NAc, indicating that an increase in 
unmodified GRIA2 leads to an increase in Ca2+ influx. Our 
gene expression analysis suggested that AMPA receptor 
dysfunction due to abnormal RNA editing may be involved 
in the pathogenesis of schizophrenia.

In the neural circuitry of the brain, the NAc receives 
projections from the PFc via the glutamatergic neurons. 
The NAc is a site for dopaminergic modulation of 
neurotransmission and may be prone to the dysregulation 
of genes characteristic of schizophrenia34. It has also been 
reported that chronic dysregulation of the NAc triggers 
altered gene expression in the PFc35. If our model reflects 
the early onset of schizophrenia, then it is possible that 
the development of schizophrenia originates in the NAc. 
The enriched functions of G × E-interacting genes were 
different in the PFc and NAc. Additionally, enrichment in 
the NAc was associated with behavioral abnormalities, 

Figure 4: Differences in gene expression in the PFc and NAc and 
the functional factors in each group.
(a) Up-regulated DEGs in the PFc. (b) Down-regulated DEGs in the 
PFc. (c) Up-regulated DEGs in the NAc. (d) Down-regulated DEGs in 
the NAc. Circos plot shows how DEGs in the NAc and PFc overlap. 
Dark orange color represents the genes that are shared by multiple 
lists and the light orange color represents the unique DEGs. Purple 
lines link the genes that are shared by multiple DEGs. Blue lines link 
the genes that fall under the same ontology term although they 
are different. DEGs: differentially expressed genes, PFc: prefrontal 
cortex, NAc: nuclear accumbens.

Figure 5: All protein-protein interaction networks for genes showing higher transcription counts in the NAc of the PCP-treated groups.
A network architecture was generated from a subset of representative terms that were extracted from the entire cluster. To be precise, every 
term is represented by a circle node, the size of which correlates with the number of input genes associated with that term. Additionally, 
the color of the circle node indicates its cluster identity, with nodes of identical color indicating membership in the same cluster. An edge 
connects terms that have a similarity score greater than 0.3; the thickness of the edge represents the similarity score. A term is selected 
from each cluster to have its corresponding term description displayed as a label. GO: gene ontology, PPI: protein-protein interactions, NAc: 
nuclear accumbens.
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suggesting that increased vulnerability to PCP in the NAc 
following Kpna1 KO is involved in the development of 
schizophrenia. Environmental stress was introduced to 
our mouse model for a brief period, coinciding with the 
onset of adolescence, which may indicate susceptibility 
to environmental stress during specific phases of 
neurodevelopment. We have demonstrated that KPNA1 is 
implicated in axonal transport36. Subunits of dopamine and 
glutamate receptors are reportedly transported via axons 
by microtubule motors; therefore, disruption of axonal 
transport in the NAc may play a role in the development of 
schizophrenia37. Although this characteristic has hitherto 
remained unexplored in the context of schizophrenia 
pathogenesis, it has emerged as a pivotal hypothesis in the 
study of the disorder.

Conclusions
Our Kpna1-deficient psychotropic drug-induced 

schizophrenia model offers a robust platform for 
investigating G × E interactions in the context of 
schizophrenia. The findings presented in this study 
contribute to our understanding of the molecular 
mechanisms underlying the pathogenesis of schizophrenia 
and may guide the development of targeted therapeutic 
interventions. Future research should focus on further 
elucidating the role of the NAc in the progression of 
schizophrenia and exploring the potential of KPNA1 as a 
novel therapeutic target.
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